This module's assignment called to generate visualizations from Dr. Piwek's posting on Tufte and Minard in R.
I had difficulty with installing and loading the list of packages all at once, and decided to load them on a case-by-case basis as they were used throughout the script.
It was interesting to see how the author created the visualizations based on a similar aesthetic accross many different toolsets (base R, lattice, ggplot2, etc.)
Marginal histogram scatter plot (base graphics with fancyaxis)
Dot-dash plot in ggplot2
Sparklines in base graphics with plotSparklineTable
############################################################################ # ------ ------ ----- MOD11: Minard and Tufte Work in R ----- ------ ------ ############################################################################ #' --- #' title: "MOD11: Minard and Tufte Work in R" #' author: "Kevin Hitt" #' date: "Due: April 6th, 2020" #' --- #' # Load packages library(ggplot2) library(ggthemes) library(devtools) library(epanetReader) library(reshape) library(RCurl) source_url("https://raw.githubusercontent.com/sjmurdoch/fancyaxis/master/fancyaxis.R") # Plots derived from: http://motioninsocial.com/tufte/#introduction # i. Marginal histogram scatter plot (base graphics with fancyaxis) # uses 'source_url' as defined with packages x <- faithful$waiting y <- faithful$eruptions plot(x, y, main="", axes=FALSE, pch=16, cex=0.8, xlab="Time till next eruption (min)", ylab="Duration (sec)", xlim=c(min(x)/1.1, max(x)), ylim=c(min(y)/1.5, max(y))) axis(1, tick=F) axis(2, tick=F, las=2) axisstripchart(faithful$waiting, 1) axisstripchart(faithful$eruptions, 2) # ii. Dot-dash plot in ggplot2 ggplot(mtcars, aes(wt, mpg)) + geom_point() + geom_rug() + theme_tufte(ticks=F) + xlab("Car weight (lb/1000)") + ylab("Miles per gallon of fuel") + theme(axis.title.x = element_text(vjust=-0.5), axis.title.y = element_text(vjust=1)) # iii. Sparklines in base graphics with plotSparklineTable dd <- read.csv(text = getURL("https://gist.githubusercontent.com/GeekOnAcid/da022affd36310c96cd4/raw/9c2ac2b033979fcf14a8d9b2e3e390a4bcc6f0e3/us_nr_of_crimes_1960_2014.csv")) d <- melt(dd[,c(2:11)]) pdf("sparklines_base_epanetReader.pdf", height=6, width=10) plotSparklineTable(d, row.var = 'variable', col.vars = 'value') dev.off()